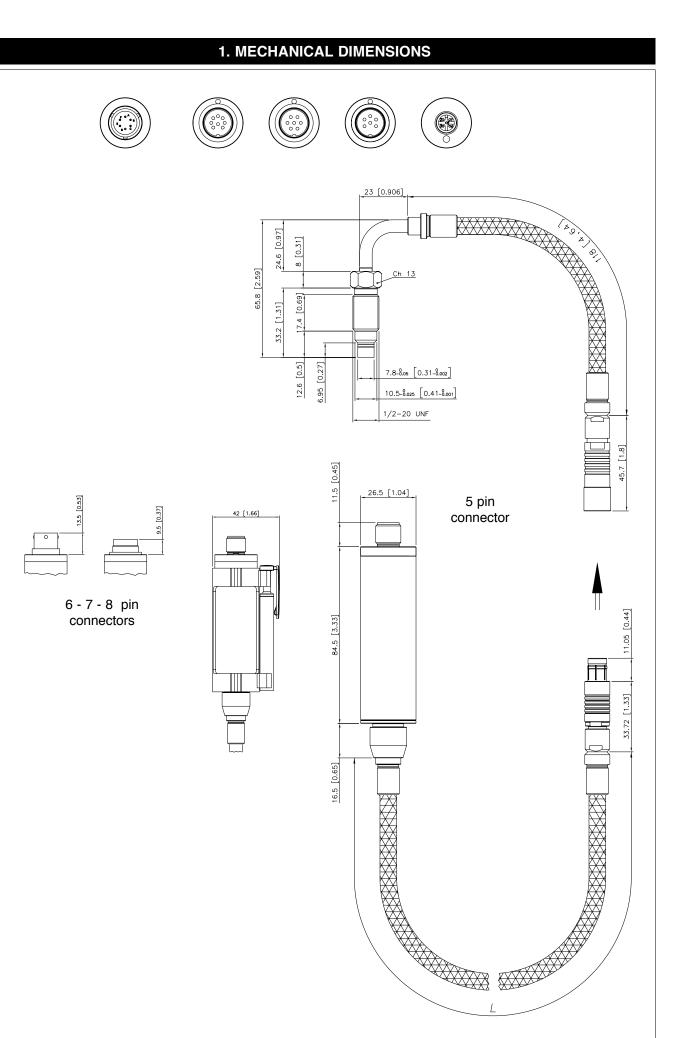
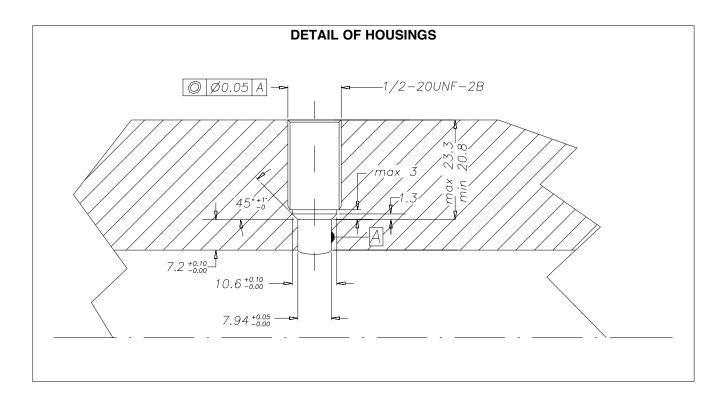


INSTRUCTION MANUAL


IJ

cod. 85179A Edit. 02 - 09-2010-ENG

Contents


1. Mechanical dimensions	pag 2
2. Installation and positioning on the machine	pag 3
2a. Installation side	pag 3
2b. Torquing the sensor	pag 3
2c. Connecting amplifier	pag 4
2d. Electrical output connections	pag 5
3. Electronic features and procedures	pag 6
3a. Self learning procedure to adjust the zero in temperature	pag 6
3b. Autozero procedure	pag 9
3c. Reset autozero procedure	pag 10
3d. Reset to factory parameters	pag 11
3e. Synoptic table	pag 13
4. Transducer technical specifications	pag 15

2. INSTALLATION AND POSITIONING ON THE MACHINE

2.a - Installation and positioning on the machine

The installation side should be as follow

Incorrect working or shape of the side can result in properties out of specification, bad behaviour or damage to the sensor.

The side should be clean and without any polymer residual.

2.b - Torquing the sensor

After checking the correct shape of the side, screw the primary part of the IJ transducer.

Hold the flexible part while screwing the jam bushing.

For safety operations at least 10 pitch of the jam bushing must be screwed into the hole

The torque must be between 35 and 50 Nm.

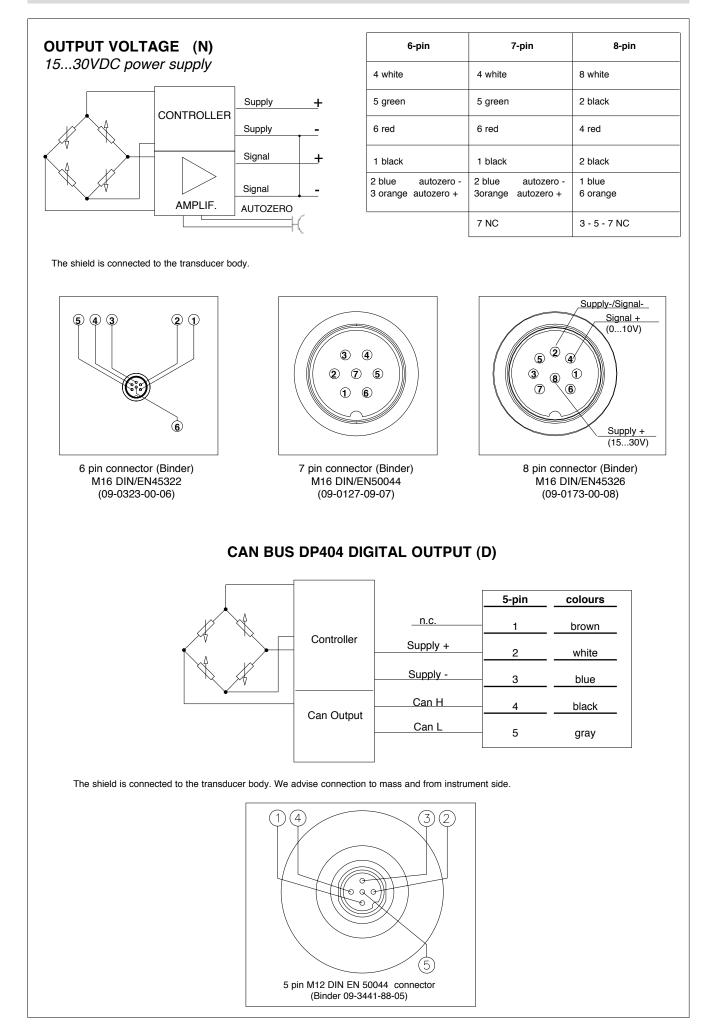
2.c - Connecting amplifier

The electronics must be connected to the primary part by aligning the 2 red points on each connector.

Take care not to force the connectors together: check the correct aligning of the 2 red points

Fix the flexible sheath to the machine. Take care not to fix the sheath to parts heated at over than 200 $^{\circ}$ C.

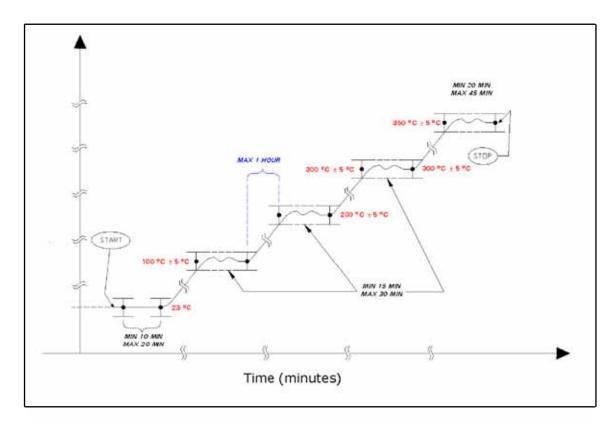
Screw the electrical cable connector to the electronics and switch on the sensor.


Wait 60 seconds before starting to operate the transducer.

To disconnect the electronics from the primary sensor, take care to handle the two connectors next to the red points and not to force the disconnection.

NOTE: in the modular versions, the decoupling between the electronics and the primary element is not allowed.

2.d - Electrical output connections


3.a - Self learnign procedure to adjust the zero in temperature

This electronic new feature was developed to assure a reliable and accurate zero drift thermal compensation of the transducer into every single process.

Take care that the pressure inside the machine must be zero all the procedure long.

To complete the process the temperature profile at the sensor position should be set as follow:

Take care that the temperature gap between the set point and the real temperature on the sensor must be less than \pm 10 °C

Take care to follow both temperature and time profile: unkept respect will result in aborting the procedure.

0...10 V signal output

The self learning is started by shorting the output pins E and F (or keeping in position the magnet) for a time between 10 and 15 seconds.

The LED next to the output electronics connector flashes three times to signal the start of the procedure.

During the self learning process the output of the transducer changes to point out the present state as in the following table:

Present state	Electronic Output
Room temperature step	2500 mV
100 °C step	3750 mV
200 °C step	5000 mV
300 °C step	6250 mV
350 °C step	10000 mV

During the self learning process the led next to the output electronics connector signals the status:

- 1. Slow flashing: the temperature is under the set point
- 2. Quick flashing: the temperature is in the tolerance band of the set point but not still stable
- 3. Continuous light: the electronics is acquiring the zero value
- 4. Normal flashing: the temperature is above the set point

At the end the led flashes one time for signal the end of the procedure.

CANOpen output

The self learning is started by a write-access on Index 4002h subindex C8h. This object is write-only and has the following structure:

Index	Sub-Index	Parameter	Access
4002h	C8h	Self learning	Wo

The start of the self learning process will be generated by transmitting the code "auto" as ASCII in the data area of Index 4002h sub C8h.

The message has to look like the following example:

Example: Write-Access, Node-ID = 2, Index 4002h, Sub-Index = C8h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	23h	02h	40h	C8h	61h	75h	74h	6Fh

Data-area = 6175746Fh --> 61h = "a", 75h = "u", 74h = "t", 6Fh = "o"

The answer after successful loading you will receive is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	60h	02h	40h	C8h	00	00	00	00

The status of the Self Learning process can be checked into byte 6 of PDO2. Firstly the user must enable PDO2 transmission (PDO2 is disabled by default) by a write-access on Index

1801h subindex 01h. The value on Sub-Index 1 defines the identifier that is used for PDO 2. The default identifier is 280h + module-address.

The 32-bit value has the following structure:

Bit 31	Bit 30 – 11	Bit 10 – 0
0 / 1	0	ID 11 bit

In order to enable the PDO the most significant bit (Bit 31) must be set to 0.

Example: Write-Access, Node-ID = 2, Index 1801h, Sub-Index = 01h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
1538	8	23h	01h	18h	01h	82h	02h	00h	00h	

As answer you will receive from the transducer:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	60h	01h	18h	01h	00h	00h	00h	00h

The identifier of the PDO 2 is now 00000282h and the PDO is active.

By sending the "OPERATIONAL" command, both PDO1 and PDO2 are sent. In Byte 6 of PDO2 the status of the Self Learning process can be checked:

Byte 6 = 02h --> The process reached the 23°C point

Byte 6 = 03h --> The process went out of the 23°C point

Byte $6 = 04h \rightarrow$ The process went out of the 100°C point

Byte 6 = 05h --> The process went out of the 200°C point

Byte 6 = 06h --> The process went out of the 300° C point

Byte 6 = 07h --> The transducer is calculating

Byte 6 = 00h --> The process stopped

When the process ends the transducer sends an EMCY message that shows the result of the process:

Byte 1 – Byte 2 = 0000h --> NO ERROR, the process ran out correctly.

Byte 1 – Byte 2 = FF00h --> DEVICE ERROR, the process aborted.

After this procedure, the electronics use the new self learned parameters instead of that calibrated in factory. To reset the parameters and set the original ones, follow the instruction at paragraph "Reset to factory parameters".

Every time it's necessary to zero the output signal of the transducer, follow the present procedure.

Take care that the pressure inside the chamber must be actually zero before doing the operation. Unkept respect can lead to hidden pressure dynamic range.

The output range that can be corrected by this feature is \pm 30 % FSO.

0...10 V signal output

The autozero is started by shorting the output pins E and F (or keeping in position the magnet) for a time between 2 and 5 seconds.

The LED next to the output electronics connector flashes two times to signal the start of the procedure.

The output range that can be corrected by this feature is \pm 30 % FSO.

After releasing the short circuit between pin E-F, the output signal of the sensor will be zero.

CANOpen output

The autozero process is started by writing on Index 6125h. The actual measuring value will be interpreted as zero. Internally the actual measuring value will be monitored to the manufacturer threshhold value. If the threshhold is exceeded, the autozero-access will lead to an error-message.

The object has the following structure:

Index	Sub-Index	Parameter	Access
6125h	0	Number of Sub-Index supported	Ro
	1	Autozero	Rw
	2	Reset Autozero	Rw

The autozero process is started by transmitting the code "zero" as ASCII in the data area of Index 6125h sub1. The message has the following format:

Example: Write-Access, Node-ID = 2, Index 6125h, Sub-Index = 01h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
1538	8	23h	25h	61h	01h	7Ah	65h	72h	6Fh	

Data-area = 7A65726Fh --> 7Ah = "z", 65h = "e", 72h = "r", 6Fh = "o"

The answer (after successful storing of the message) you will receive is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1410	8	60h	25h	61h	01h	00h	00h	00h	00h

At the end of the autozero process an EMCY message is sent in order to show the result of the operation. The value of Byte 8 of the EMCY message shows the autozero process result:

Byte 8 = 02h --> autozero process ran out correctly.

Byte 8 = FEh --> autozero process aborted because the process value exceeded the allowed threshold.

Byte 8 = FFh --> autozero process aborted because another AUTO_ZERO process was already running.

This procedure is necessary at the first installation of the sensor: it should be done at stable temperature and after the first working cycles of the machine to compensate the torque effect and the stabilization of the sensor in its side.

To reset all the autozero operations, follow the instruction at paragraph "Reset autozero".

3.c - Reset Autozero procedure

0...10V signal output

The autozero is started by shorting the output pins E and F (or keeping in position the magnet) for a time between 20 and 25 seconds.

The LED next to the output electronics connector flashes two times to signal the start of the procedure. The transducer is set to factory parameters, except for the zero drift self learned parameters.

CANOpen output

The reset autozero process is started by writing on Index 6125h. The object has the following structure:

Sub-Index	Parameter	Access
0	Number of Sub-Index supported	Ro
1	Autozero	Rw
2	Reset Autozero	Rw
	Sub-Index 0 1 2	0Number of Sub-Index supported1Autozero

The reset autozero will be generated by transmitting the code "resz" as ASCII in the data area of Index 6125h sub2.

The message has the following format:

Example: Write-Access, Node-ID = 2, Index 6125h, Sub-Index = 02h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	23h	25h	61h	02h	72h	65h	73h	7Ah

Data-area = 7265737Ah --> 72h = "r", 65h = "e", 73h = "s", 7Ah = "z"

The answer (after successful storing of the message) you will receive is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
1410	8	60h	25h	61h	02h	00h	00h	00h	00h	

The transducer is set to factory parameters, except for the zero drift self learned parameters.

0...10V signal output

The reset to factory parameters is started by shorting the output pins E and F (or keeping in position the magnet) for a time between 30 and 35 sec.

The LED next to the output electronics connector flashes five times to signal the start of the procedure. The transducer is set to factory parameters.

CANOpen output

1. CAN DEFAULT PARAMETERS.

By writing on Index 1011h the CAN default parameters can be loaded. The object has the following struc-ture:

_	Index	Sub-Index	Parameter	Access	Туре
	1011h	0	Number of Sub-Index supported	Ro	Unsigned 8
_		1	Restore Default Parameters	Rw	Unsigned 32

The default parameters values are shown in the list below.

Index	Name	Default
6112h	Operating Mode	1 (Channel On)
6144h	Analog Input Lower limit	0
6145h	Analog Input Upper limit	0
2000h	Node – ID	127d OR according to
		customer order
2001h	Baudrate setting	7d (500KB)
6509h	Alarm 1 Action	0
6519h	Alarm 2 Action	0
750Ah	Alarm 1 Level	0
750Bh	Alarm 1 Hysteresis	0
751Ah	Alarm 2 Level	0
751Bh	Alarm 2 Hysteresis	0
7124h	Input Offset	0
1014h	Emergency ID	80h + ID
1017h	Producer Time / Heart Beat	0 ms
1005h	SYNC-ID	80 h
1800h	PDO 1 – Parameter	PDO active, ID 180h + Node-
		ID, Transmission type FEh,
		Timer 14h
1801h	PDO 2 – Parameter	PDO not active, ID 280h +
		Node-ID, Transmission type
		FEh, Timer 14h

The loading will be generated by transmitting the code "load" as ASCII in the data-area of Index 1011h. The message has to look like the following example:

Example: Write-Access, Node-ID = 2, Index 1011h, Sub-Index = 01h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1538	8	23h	11h	10h	01h	6Ch	6Fh	61h	64h

Data-area = 6C6F6164h --> 6Ch = "I", 6Fh = "o", 61h = "a", 64h = "d"

The answer after successful loading you will receive is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
1410	8	60h	11h	10h	01h	00h	00h	00h	00h	

The transducer is set to factory CAN parameters.

2. CALIBRATION DEFAULT PARAMETERS.

By a write-access on Index 2241h the calibration value can be reloaded to default factory values. This object is write-only and has the following structure:

Index	Sub-Index	Parameter	Access
2241h	C8h	Reset Calibration	Wo

The loading will be generated by transmitting the code "rest" as ASCII in the data-area of Index 2241h subindex C8h. The message has to look like the following example:

Example: Write-Access, Node-ID = 2, Index 2241h, Sub-Index = C8h

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
1538	8	23h	41h	22h	C8h	72h	65h	73h	74h	

Data-area = 72657374h --> 72h = "r", 65h = "e", 73h = "s", 74h = "t"

The answer after successful loading you will receive is:

ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
1410	8	60h	41h	22h	C8h	00h	00h	00h	00h	

The transducer is set to factory calibration parameters.

0...10V signal output

Time for activation	Led flashing	Operation
2 to 5 seconds	2 flashes	Autozero function
10 to 15 seconds	3 flashes	Self learning function
20 to 25 seconds	4 flashes	Reset autozero
30 to 35 seconds	5 flashes	Reset to factory parameters
	1 flash	Self learning procedure ended
	Slow flashing	Temperature under set point
	Normal flashing	Temperature above set point
	Quick flashing	Temperature in tolerance but not stable
	Continuous light	Acquiring data

CANOpen output

1. CAN MESSAGES

SDO sent	SDO received	PDO 2	EMCY	OPERATION
6125h sub 1h "zero"	6125h sub1h data = 0	-	Byte 8 = 02h	Autozero OK
			Byte 8 = FEh	Autozero aborted
				(out of threshold)
			Byte 8 = FFh	Autozero aborted
4002h sub C8h "auto"	4002h sub C8h data=0	Byte 6 = 02h	-	Self learning 23 °C
		Byte 6 = 03h	-	Self learning 100 °C
		Byte 6 = 04h	-	Self learning 200 °C
		Byte 6 = 05h	-	Self learning 300 °C
		Byte 6 = 06h	-	Self learning 350 °C
		Byte 6 = 07h	-	Self learning
				calculating
		Byte6= 00h	Byte 1-2 = 0000h	Self learning stopped
				> OK
		Byte6= 00h	Byte 1-2 = FF00h	Self learning stopped
				> ABORT
6125h sub 2h "resz"	6125 sub 2h data = 0	-	-	Reset autozero OK
1011h sub 1h "load"	1011h sub 1h	-	-	Restore CAN
	data = 0			parameters
2241h sub C8h "rest"	2241h sub C8h	-	-	Restore CALIBRATION
	data = 0			parameters

2. LED STATUS

After power-on the LED present on the top of the transducer will be turned on and off for a short moment and turned on again.

Diagnosis in Pre-Operational State.

Status of the LED	Meaning
Quick flashing (2 times per second)	Device is in Pre-Operational state
Off	Supply voltage not ok, hardware not ok
Short Flashes every second (10ms flashes)	Input is left open or wrong sensor type
On	Supply Voltage ok but no CAN connection; maybe the wrong baudrate is selected or any other physical error on the bus

Diagnosis in Operational State.

Status of the LED	Meaning
Quick flashing (2 times per second)	Device is in Pre-Operational state
Slow blinking (1 Hz)	Device is in Operational State and there is communication
	with the device via CANbus
Short Flashes every second (10ms flashes)	Input is left open or wrong sensor type
On	Device is in Operational State but there is no
	communication

4. TRANSDUCER TECHNICAL SPECIFICATIONS

Technical Specifations

Accuracy (1)	±0,5%FSO
Repeatability	±0,2%FSO
Measurement range	3000bar / 40000psi
Overpressure without degrading	3500 bar
Measurement principle	Piezoresistive
Power supply	1530Vdc (N), 1240Vdc (D)
Maximum current absorption	25mA (N) 40mA (D) (2)
Insulation resistance (at 50Vdc)	>1000 MOhm
Output signal Full Scale FSO	10Vdc (N) Depends on FSO (D)
Zero balance tollerance (tolerance ± 0.25% FSO)	0Vdc (N) - O (D)
Zero signals adjustment (tolerance ± 0.25% FSO)	"Autozero" function
Maximum allowed load	1mA
Response time (1090% FSO)	1ms (N) 0,5ms - 2kHz (D)
Output noise (RMS 10-400Hz)	< 0.025% FSO
Output short circuit ingress and reverse polarity protection	YES
Voltage spike protection	> 2KV burst test, to EN61000-4-4
CE conformity (standard 89/336)	EMC Emission EN61000-6-3
	EMC Immunity EN61000-6-2 (10V/m)
Housing compensed temperature range	0+85°C
Housing operating temperature range	-30+105°C
Housing storage temperature range	-40+125°C
Sensor compensated temperature range	+20+350°C
Maximum diaphragm temperature	350°C / 660°F
Zero signal variation due to process temperature variation in range (100-350°C)	< ± 1%FSO
Full-scale signal variation due to process temperature variation in range (20-350°C)	< ± 1%FSO
Contact diaphragm with process	15-5 PH GTP
Protection degree	IP65
Electrical connection (0-10 V output)	6-pin / 7-pin / 8-pin connector
Tightening torque	3045Nm
CANopen OUTPUT (D)	
Sampling	16 bit (3)
Protocol	DP404 CANopen, with Baudrate selectable
	from 10k to 1MB (Default 500KB)
Electrical connection	5 pin M12, DIN EN50044 connector